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Figure 1. Detailed steps of the shape swapping process. We start
with an empty mask as a canvas and then complete the mask re-
composition gradually.

1. Shape Swapping Details

As described in Sec. 3.1 of the main paper, a shape swap-
ping process is required to realize the aim of face swapping.
Since facial masks represent the shape, the shape swapping
is completed in a recomposition fashion, which is similar to
the heuristic mask generation process in [20]. This process
is illustrated in Fig. 1.

2. Loss Functions

Unlike most of the face swapping methods, we do not
need to swap source and target face pairs in the training
phase, but rely on the simple image reconstruction instead.
We adopt the commonly-used loss functions in the GAN
inversion literature.

Pixel-wise reconstruction loss. For the input image I ,
suppose the reconstructed image is Î , we use the Mean-
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Squared-Error (MSE) as the pixel-wise reconstruction loss:

Lmse =
∥∥∥Î − I

∥∥∥2
2

(1)

Multi-scale LPIPS loss. Using MSE alone cannot pro-
duce sharp results. Inspired by [18], we use the multi-scale
LPIPS [19] loss to encourage sharpness in the reconstructed
images, which is expressed as:

Lms lpips =
∑
s

∥∥∥V(⌊Î⌋s)−V(⌊I⌋s)
∥∥∥2
2
, (2)

where V denotes the AlexNet [7] feature extractor pre-
trained on ImageNet [8], s ∈ {256, 512, 1024}, and ⌊Î⌋s
represents the downsized input with the resolution of s.

Multi-scale face inversion loss. The ID loss was in-
troduced in PSP [13] to preserve the identity of the input.
Specifically, PSP uses a pre-trained face recognition net-
work to maximize the cosine similarity between the input
and the reconstructed face. Besides, the method [18] takes
a step further to improve the ID loss within a multi-scale
form, calculating the similarities in different feature levels.
We follow these two works and apply the multi-scale ID
loss constrain as:

Lms id =

5∑
i=1

(
1− ⟨Ri(I), Ri(Î)⟩

)
, (3)

where R is the pre-trained ArcFace [4] model, and ⟨·⟩ de-
notes the cosine similarity.

Moreover, we follow the work [18] to employ a multi-
scale face parsing loss as:

Lms parsing =

5∑
i=1

(
1− ⟨Pi(I), Pi(Î)⟩

)
, (4)

where P is the pre-trained face parser used in [9].
We sum up the above loss functions as our reconstruction

loss Lrecon, which can be expressed as:

Lrecon = Lmse+λ1Lms lpips+λ2Lms id+λ3Lms parsing,
(5)
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Table 1. Quantitative comparison of our RGI under different abla-
tive configurations. The reconstruction performance is measured.

Configurations SSIM↑ PSNR↑ RMSE↓ FID↓
our RGI full model 0.818 19.851 0.105 15.032
(C) w/o Lms lpips 0.805 19.672 0.107 14.477
(D) w/o MS encoder 0.817 19.732 0.107 15.112
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Figure 2. Qualitative comparison under different ablative config-
urations. For each row, we show the ground-truth, the reconstruc-
tion of our baseline, and the reconstruction of the correspond-
ing configuration from left to right, respectively. (C) Without
Lms lpips, the skin color and illumination are worse than the base-
line. (D) The multi-scaled encoder helps to capture styles better
(see the color of eyes).

where λ1 ∼ λ3 are trade-off hyperparameters.

Adversarial loss. Imposing the reconstruction loss
Lrecon solely cannot produce realistic reconstruction re-
sults. Thus, we additionally leverage the adversarial train-
ing to help improve the final image quality, which is defined
as:

Ladv = E[1− logD(Î)] + E[logD(I)], (6)

where D is initialized with the pre-trained StyleGAN dis-
criminator. Finally, the overall loss function of our RGI can
be expressed as:

L = Lrecon + λadvLadv. (7)

In all the experiments we set the hyperparameters
λ1, λ2, λ3, and λadv as 0.8, 0.1, 0.1, and 0.01, respectively.

3. More Ablation Studies
We conduct more ablation studies on other components

and show the quantitative result in Tab. 1, where the con-
figuration (C) and (D) denote multi-scale LPIPS loss and
multi-scale feature encoder are discarded during training,
respectively. The reconstruction performance drops a little
when the multi-scale LPIPS loss is discarded. The corre-
sponding reconstruction quality also supports this observa-

tion, which can be seen from the first row in Fig. 2 (see
the skin color and illumination). We employ a similar en-
coder network as in [13] for our Fθ, which is used to ex-
tract multi-scale feature maps and the subsequent per-region
style codes. For configuration (D), only the last level of
feature maps produced by Fϕ is used. Compared with our
full model, the performance of the single-scale encoder is
worse, which is consistent with the qualitative comparison
shown in the second row in Fig. 2 (see the color of eyes).

4. More Swapping Results

We present more qualitative comparisons with state-of-
the-art face swapping methods FSGAN [11], SimSwap [2],
FaceShifter [10] and HifiFace [16], where the results are
shown in Fig. 6 and Fig. 7. The generated faces of FSGAN
are blurry. Besides, artifacts can be found in the results of
SimSwap and Hififace (see the 1st and 4th row of Fig. 6, and
the 6th row of Fig. 7). The swapped faces of Faceshifter and
ours are visually pleasing; however, Faceshifter may focus
too much on the target (see the 1st and 7th row of Fig. 6,
and the 2nd and 7th row of Fig. 7). Our method is able
to produce high-fidelity and high-resolution (10242) results,
which preserve the identity information from the source im-
age better and show a similar pose and expression as the tar-
get image. It is worth noting that only our method can keep
the skin tone of the source, which is also an identity-related
attribute.

More realistic and high-quality face swapping results
achieved by our method are shown in Fig. 8 and Fig. 9, com-
pared with some StyleGAN-based methods (MegaFS [22],
StyleFusion [6] and HiRes [17]) for reference. In each
row, we display the source and target faces in the first col-
umn, and show the swapped results of each method in se-
quence. We can clearly see that MegaFS would produce
unexpected artifacts when the source and target show dif-
ferent poses (see the 2nd row of Fig. 8 and 4th row of
Fig. 9). While for the HiRes, we can find some distortions
on the swapped face, especially for the skin and teeth re-
gions. Though StyleFusion can generate visually satisfying
results, the resulting faces show a bit of over-smoothing,
and the hair looks unnatural. On the contrary, our results
are much sharper and retain detailed textures better. Our
approach can handle more challenging cases where the oc-
clusion exists in the source and target faces (see the 2nd and
4th row of Fig. 8).

Additionally, we compare the model complexity of dif-
ferent face swapping approaches in terms of number of pa-
rameters in Tab. 2. Our RGI has two sub-modules Fϕ and
Gθ for face editing, while the reenactment module Face-
Vid2Vid is for face swapping only. Our RGI and Face-
Vid2Vid are with 173.19M and 161.76M separately.

https://github.com/mindslab-ai/hififace

https://github.com/mindslab-ai/hififace


Table 2. The model complexity comparison in terms of number of
parameters.

Methods Params
FSGAN [11] 266.72M
SimSwap [2] 120.21M
FaceShifter [10] 249.50M
HifiFace [16] 244.28M
MegaFS [22] 338.60M
StyleFusion [6] 214.89M
HiRes [17] 434.38M
Ours 334.95M

5. Reconstruction Visual Comparison
In Fig. 10, we display the high-fidelity reconstruc-

tion results achieved by our RGI. Here, we compare our
results with the leading fine-grained face editing meth-
ods: SPADE [12], Mask-guided GAN [5], SEAN [21],
MaskGAN [9] and SofGAN [1]. Note that SofGAN is
an optimization-based method and for a fair comparison,
we also add an optimization phase to our RGI (i.e., RGI-
Optim.). Whenever the optimization stage is applied, we
fix the learning rate as 1e−2. We empirically find our RGI-
Optim. only needs about 50 iterations (∼16s) to achieve
satisfying results, while SofGAN [1] roughly needs about
1000 iterations (∼2 mins).

As can be seen, SEAN sometimes produces artifacts on
hair. In contrast, our RGI keeps identity and texture in-
formation better, such as skin tone, eye color, and illumi-
nation. Although both SofGAN and our RGI-Optim. ap-
ply style code optimization during the reconstruction, Our
RGI-Optim. is able to preserve details better (e.g., the curly
degree of hair, the thickness of beard, dimples, and back-
ground), while SofGAN suffers from losing identity. Please
zoom in and pay attention to the red rectangles of each ex-
ample for a better understanding.

6. Additional Face Editing Comparison
Fig. 3 shows the face editing comparison of Mask-guide

GAN [5] and ours. Although both approaches adopt the
strategy of part-based facial generation, our results look
more natural and preserve identity and details better.

7. The Intermediate Re-enacted Result
We provide the intermediate re-enacted results in Fig. 4,

where the mouth of the source is open while that of the tar-
get is closed. Our reenactment module aims to drive the
source to reach a similar pose and expression as the target
(e.g., see the cheek and mouth). The mouth of the reenacted
face is closed. However, aside from pose and expression, an
ideal reenactment model should not affect other source at-
tributes, such as identity. Note that the reenactment module

orig. mask orig. img edited mask Mask-Guided Ours

Figure 3. Additional comparison with Mask-guided GAN [5].

source target reenacted swapped

Figure 4. Side-by-side comparison of the source, the target, output
of the reenactment network, and the swapped face.

is only needed for face swapping. The style code and shape
swapping step are just parameter-free vector replacement
operations.

8. More Applications

8.1. Face beautification

Inspired by SEAN [21], we develop a user-interface sys-
tem to perform face beautification. A screenshot is shown
in Fig. 11. A control panel (Fig. 11(a)) is placed on the
left side, where some necessary editing functionalities like
brush, fill and undo are included. On the right side, we
provide a reference image gallery (Fig. 11(b)) for users to
choose from. Generally, users can perform two kinds of
editing, i.e., shape editing and texture editing. For shape
editing, one can directly modify the facial mask, such as
cutting some hair, enhancing the eyebrows, etc. For texture
editing, a reference image is needed to perform style code
swapping or interpolation. Users can select the interested
facial region(s) in the top checkbox panel and the bottom
colored button panel (Fig. 11(c)). We show the input image,
mask, and the edited result in the main panel (Fig. 11(d))
from left to right. Note that the incremental editing feature
is supported. That is, users can choose different reference
images and edit contiguously until the result is satisfying.
We also provide an interactive editing video demo, which
can be found in our project page.



8.2. Hair transferring.

Thanks to the fine-grained editing capability of our RGI,
we can exchange the style code of hair between the source
and reference images to realize hair style transferring. Be-
side ours, we show the results of StyleFuison [6], Retrieve-
InStyle [3] and Barbershop [20] for reference. As demon-
strated in Fig. 12, we can obverse that our results are visu-
ally pleasing and look realistic. The StyleFusion and Re-
trieveInStyle are methods based on the S latent space of
StyleGAN. We find their results struggle to maintain the
original hair shape due to the entanglement between the
shape and texture of the S space. Our method is superior
in terms of hair textures and source identity preservation.
Compared with Barbershop, our method shows comparable
results. However, it takes about 400s to finish the hair trans-
ferring process of the Barbershop since it is an optimization-
based method. In contrast, we only need a simple forward
pass that takes about 0.3s. Interestingly, other than color,
the curly degree and splitting are also captured in our tex-
ture.

8.3. Controllable face swapping.

Our proposed fine-grained face swapping approach is
flexible to control the amount of the face swapping by the
interpolation of style codes of two faces. This concept is il-
lustrated in Fig. 13. We first perform the shape swapping to
obtain the recomposed masks of facial components (see Sec
3.1 in our main paper). With the fixed masks, we then per-
form the texture code interpolation of eyebrows, eyes, nose,
mouth, lips, face skin, neck, and ears. The amount of face
swapping is determined by an interpolation ratio λ. λ = 0
means the full face swapping, i.e., the texture codes of the
swapped components come from the source. λ = 1 means
the texture codes of the components come from the target.
As shown in Fig. 13, we can produce high-quality swapped
faces with smooth texture transition from the source to the
target. Please pay attention to the skin tone, beard, nose,
eyebrows, and eye color.

8.4. Video face swapping.

Our E4S framework can also be applied for video face
swapping. We follow STIT [14] to crop and align the source
image and the target video beforehand, obtaining the source
face S and an n-frame target face video {Ti}ni=1. We first
reenact the source S towards the target video to obtain the
driven video {Di}ni=1. Then, we can achieve face swapping
by swapping each driven and target pair {(Di, Ti)}ni=1, as
described in Sec 3.1 in our main paper. However, we find
this will bring some temporal inconsistency, which is an ex-
pected result since our RGI is only trained with images. To
mitigate this, we opt to fine-tune the generator of our RGI
on all the driven frames, where the Lrecon is leveraged as
the loss function. We update the parameters 200 times for

Source Target Result

Figure 5. Failure cases of our E4S approach. First row: the cur-
rently used pretrained reenactment model sometimes fails to keep
the similar gaze direction as the target. Second row: the illumina-
tion is also included in our per-region style code, causing incon-
sistency when the source and target show large lighting difference.

each frame, and set the learning rate to 10−3. After fine-
tuning, we can adopt the frame-by-frame swapping strategy
and then blend with the background of the target face video
to obtain a temporally consistent result. For reference, we
compare our results with FaceShifter [10] and HiRes [17]
in Fig. 14, please check our project page to see the videos.
We find HiRes struggles to generate a wink in the swapped
video (see the frames in Fig. 14 highlighted in red). On
the other hand, FaceShifter sometimes fails to transfer the
source identity (see the frames in Fig. 14 highlighted in pur-
ple). As can be observed from the image and video compar-
isons, our results show better visual quality and temporal
consistency.

9. Limitations and Discussion

Our proposed E4S framework has several limitations.
First, we rely on a reenactment model to obtain a similar
pose and expression as the target face. In our current imple-
mentation, we employ the open-source pre-trained model
FaceVid2Vid [15]. We find it fails to keep a similar gaze di-
rection sometimes; however, the pose and expression of the
swapped face mainly depend on the output of the reenact-
ment model. Here, we show an example in the first row of
Fig. 5. Second, the overall inference time of our method is
about 0.97s for swapping a source and target pair on a Tesla
A100 GPU. We inspect the running time of each inside step,
finding the reenactment and the swapping cost 0.51s and
0.23s, respectively. In a word, a better and more efficient
reenactment model will alleviate the above two limitations.
Third, illumination is another challenging problem for E4S.
Specifically, we have not specially considered illumination
in our framework, while the illumination is one kind of in-
formation in the proposed per-region texture. It may cause



some inconsistency when the source and target show large
lighting differences, with an example shown in the second
row of Fig. 5. Decoupling the illumination from the tex-
ture or harmonizing the swapped result will be explored in
future work.
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Source Target FSGAN [11] SimSwap [2] FaceShifter [10] HifiFace [16] Ours

Figure 6. Additional qualitative comparisons of our results with state-of-the-art face swapping methods. Zooming-in is recommended to
better observe fine details in all figures.



Source Target FSGAN [11] SimSwap [2] FaceShifter [10] HifiFace [16] Ours

Figure 7. Additional qualitative comparisons of our results with state-of-the-art face swapping methods. Zooming-in is recommended to
better observe fine details in all figures.



Source / Target MegaFS [22] StyleFusion [6] HiRes [17] Ours

Figure 8. Compared with the existing StyleGAN-based face swapping approaches (MegaFS [22], StyleFusion [6] and HiRes [17]), our
proposed method can achieve high-fidelity results that show better identity keeping from the source, while keeping the similar pose and
expression as the target. Note that skin color preservation and proper occlusion handling are our advantages over others. All the facial
images are at 1024×1024.



Source / Target MegaFS [22] StyleFusion [6] HiRes [17] Ours

Figure 9. Compared with the existing StyleGAN-based face swapping approaches (MegaFS [22], StyleFusion [6] and HiRes [17]), our
proposed method can achieve high-fidelity results that show better identity keeping from the source, while keeping the similar pose and
expression as the target. Note that skin color preservation and proper occlusion handling are our advantages over others. All the facial
images are in 1024×1024.



Ground-truth SPADE [12] SEAN [21] MaskGAN [9] SofGAN [1] Our RGI Our RGI-Optim.

Figure 10. Reconstruction comparisons of our results with state-of-the-art fine-grained face editing methods. Our method can achieve
high-fidelity reconstructed results. We also show our results with style code optimization where the details (e.g., curly degree of hair,
thickness of the beard, dimple, and background) are preserved better.

Figure 11. A screenshot of our interactive editing system.



Source Reference StyleFusion [6] RetrieveInStyle [3] Barbershop [20] Ours

Figure 12. Hair style transferring examples achieved by our RGI. The results are in high-quality and look realistic.
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Figure 13. Controllable face swapping examples achieved by our E4S. We can smoothly generate some transitional faces between target
and swapped face via style codes interpolation. The λ under each image denotes the interpolation coefficient.
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Figure 14. Video face swapping comparisons of our results with FaceShifter [10] and HiRes [17]. Our method shows the better capability
of source identity transferring and target attribute preservation (e.g., pose, expression, wink). The visual quality and temporal consistency
of our results also surpass previous methods.
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